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Abstract 

The verification of matrix copositivity is a well known 
computationally hard problem, with many applications 
in continuous and combinatorial optimization. In this 
paper, we present a hierarchy of semidefinite program- 
ming based sufficient conditions for a real matrix to be 
copositive. These conditions are obtained through the 
use of a sum of squares decomposition for multivari- 
able forms. As can be expected, there is a tradeoff be- 
tween conservativeness of the tests and the correspond- 
ing computational requirements. The proposed tests 
are shown to be exact for a certain family of extreme 
copositive matrices. 

1 Introduction 

A real matrix M is said to be copositive if the quadratic 
form x T M x  takes only positive values in the nonneg- 
ative orthant. As opposed to positive definiteness, 
which can be efficiently verified (for example, using 
the Cholesky decomposition), there are no polyno- 
mial time algorithms for checking copositiveness, unless 
CO-NP=NP. 

Copositive matrices have numerous applications in di- 
verse fields of applied mathematics, especially in opti- 
mization. It is a critical ingredient in the character- 
ization of local solutions of constrained optimization 
problems [lo], such as the linear complementarity prob- 
lem [3]. Also, it has been recently shown that its use 
can notably improve certain convex relaxation bounds 
in quadratic programming problems with linear con- 
straints [15]. These relaxations are the underlying ba- 
sis of many important results in robustness analysis. A 
recent example of its application in a control setting is 
in the stability analysis using piecewise quadratic Lya- 
punov functions [8]. 

From a computational complexity viewpoint, the recog- 
nition problem for copositive matrices is hard, in gen- 
eral. It has been shown that checking if a given ma- 
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trix is not copositive is an NP-complete problem [lo]. 
Equivalently, checking copositivity is in CO-NPC (see 
[5, 111 for background material on computational com- 
plexity). This implies that, unless CO-NP=NP (a con- 
sequence of P=NP), in general it is not possible to con- 
struct polynomial time certificates of copositivity (i.e., 
copositivity is not in NP). 

In many cases, however, it is possible to efficiently con- 
struct such certificates. For example, assume that the 
matrix M has a decomposition M = P + N ,  with P 
positive semidefinite and N componentwise nonnega- 
tive. It is clear that this implies that M is copositive, 
with the matrices P and N providing a polynomial time 
verifiable certificate. 

In a similar way, the results in this paper provide a uni- 
fied methodology of constructing sufficient conditions 
for copositivity. The procedure u.ses as a basic tool a 
sum of squares decomposition for multivariable forms, 
which can be obtained using semidefinite programming 
methods [19, 14, 131. One of the main advantages of 
the proposed procedure is that it can also be applied 
to the case when the coefficients of M are variable (or 
uncertain) . 
The structure of the paper is as follows: in section 2 we 
introduce the notation and some background material. 
In section 3 a procedure to compute a sum of squares 
decomposition for a multivariable form is reviewed. In 
the next section, the SOS decomposition and P6lya's 
theorem on positive definite forms are employed to pro- 
duce copositivity certificates. In section 5 we present 
numerical examples, and finally, future research direc- 
tions are outlined and conclusions are made. 

2 Backgrounld 

The notation is mostly standard. A matrix hl E WnXn 
is copositive if x T M x  2 0 Vx E R", xi 2 0. Equiva- 
lently, the quadratic form is nonnegative on the closed 
nonnegative orthant. If x T M x  takes only positive val- 
ues on the closed orthant (except the origin, of course), 
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then M will be strictly copositive. 

A set S Rn is a said to be a cone if X 2 0,z E 
S + Xx E S. A set S is convex if 21, 2 2  E S implies 
X z l  + (1 - X)z2 E S for all 0 5 X 5 1. The dual of a 
set S is S* = {y E Rn : z E S =+ (z,y) 2 0) .  A point z 
of a convex cone C is an extreme point if = 2 1  + 22, 
zi E C implies z1 = Xz, 22 = (1 - X)z, 0 5 X 5 1. It 
can be shown that the set of copositive matrices C is 
a closed convex cone [6]. We also denote as P,N the 
self-dual cones of positive semidefinite and elementwise 
nonnegative matrices, respectively. 

Denote by Fn,m the set of homogeneous forms of de- 
gree m in n variables (21,. . . , X n } ,  with real coeffi- 
cients.’ Every such form can be written as a sum of 
(n+g-l) monomials, each one of the form ca n:=, zs‘, 
with C:=,ai = m. A form F E Fn,m is nonnegative 
(or positive semidefinite) if F ( z )  2 0 for all z E Rn. It 
is positive definite if F ( z )  > 0 for all z E R”, 2 # 0. 

There exist in the literature explicit necessary and suf- 
ficient conditions for a given matrix to be copositive. 
These conditions are usually expressed in terms of prin- 
cipal minors (see [21, 31 and the references therein). 
However, since checking copositivity of a matrix is a 
co-NP-complete problem [lo], this implies that in the 
worst case these tests can take an exponential number 
of operations (unless P = NP). Thus, the need for effi- 
cient sufficient conditions to guarantee copositivity. 

We briefly describe two applications of copositive ma- 
trices, mentioned in the introduction. Consider first the 
problem of obtaining a lower bound on the optimal so- 
lution of a linearly constrained quadratic optimization 
problem [15]: 

f * =  min zTQz 
Az20, zTz=l 

If there exists a solution of the LMI 

Q - A ~ C A  2 71 

where C is a copositive matrix, then it immediately fol- 
lows that f* 2 y. Thus, having semidefinite program- 
ming tests for copositivity allows for enhanced bounds 
for this type of problems. The other application, pre- 
sented in [8], deals with the analysis of piecewise linear 
systems using piecewise quadratic Lyapunov functions. 
One of the basic issues in that problem is checking non- 
negativity of the Lyapunov function, in a region (or 
“cell”) defined by linear inequalities. To this end, an 
LMI-based sufficient condition is usually employed. By 
using the improved copositivity tests presented in this 
paper, less conservative answers can be obtained, espe- 
cially in the case of systems of high state dimension. 
The conditions in [8] basically correspond to the sufFi- 
cient condition (3). 

3 The sum of squares decomposition 

Let F ( z )  E .Fn,m be a homogeneous form of degree m in 
n variables ($1,. . . ,zn}, with real coefficients. A sufFi- 
cient condition for F to be nonnegative is the existence 
of a sum of squares decomposition F ( z )  = xi f;(z) (of 
course, m has to be even). If F is nonnegative, and the 
fi(z) are constrained to be rational functions, the exis- 
tence of this decomposition is guaranteed by Artin’s so- 
lution to Hilbert’s 17th problem. If the functions fi(z) 
should instead be homogeneous forms, then the exis- 
tence is guaranteed only in certain cases, depending on 
the values of n and m [IS]. It has been shown [19,14,13] 
that this decomposition, if it exists, can be obtained by 
using semidefinite programming methods. We briefly 
outline the methodology below; a complete description 
can be found in the references mentioned earlier. 

The basic idea of the method is the following: express 
the given form F ( z )  as a quadratic form in some new 
variables z .  These new variables are all the monomials 
of degree equal to fm given by the different products 
of the z variables. Therefore, F ( z )  can be represented 
as 

F ( z )  = zTQz,  (1) 
where Q is a constant matrix. If in the representation 
above Q is positive semidefinite, then F ( z )  takes only 
positive values. In principle, this condition is conser- 
vative, generally speaking. The main reason is that 
since the variables .zi are not independent the represen- 
tation (1) might not be unique, and Q may be positive 
semidefinite for some representations, but not for oth- 
ers. Fortunately, this conservativeness can be avoided 
by using identically satisfied constraints that relate the 
zi variables among themselves (of the form zizj = zkzl 
or 2: = zkzl). This way, it is easily shown that there is 
a linear subspace of matrices Q that satisfy (1). If the 
intersection of this subspace with the positive semidef- 
inite matrix cone is nonempty (which can be checked 
by solving an LMI feasibility problem), then the orig- 
inal function F is guaranteed to be a sum of squares, 
and therefore positive semidefinite. This follows from a 
decomposition of Q = LTL, which implies the sum of 
squares representation F ( z )  = Ci(Lz)5. Conversely, 
if F can indeed be written as the sum of squares of 
forms, then expanding in monomials will provide the 
representation (1). 

Example 1 Consider the following quartic form in 
two variables: 

F ( X 1 ,  x2) = 25; + 2x?x2 - x:x; + 52:: 

21x2 

1 0 - 1 + 2 A  

2 - A  
- A  5 

21x2 

[ 21 
21x2 
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Taking for instance A = 3, the matrix in the last ex- 
pression is positive semidefinite. I n  this case, 

Q = L T L ,  L = - [  1 2 - 3 1  ] 
J z O 1 3 '  

and therefore we obtain the sum of squares decomposi- 
tion: 

1 F(51,22) = ~ ( ( 2 x 1  - 32; + 2 1 Z 2 ) 2  f (2; -k 351x2)~) .  

U 

4 Main Results 

In order to apply the sum of squares decomposition to 
the matrix copositivity problem, we need a way of deal- 
ing with the constraints in the variables, since each xi 
has to be nonnegative. A natural way of addressing this 
issue is the following: to check copositivity of M ,  we can 
consider xi = zf and study the global nonnegativity of 
the fourth order form given by: 

P ( Z )  := X * M X  = mijz:z:. 
i j  

It is easy to verify that M is copositive if and only if 
the form P ( z )  is positive semidefinite. Therefore, an 
obvious sufficient condition for M to be copositive is 
that.P(z) can be written as a sum of squares. 

In order to,do that, as explained in the previous section, 
we have to express P ( z )  as a quadratic form in the 
variables z; and zizj, for i # j .  In principle, the order 
of the new matrix Q is now n+ (;). The nonuniqueness 
of the representation follows from the identities 

( Z i Z j ) 2  = (z:)(z;) 
(22 z j  ) ( W l )  = (z:) ("j 21) 

(zizj)(zks) = ( Z i Z k ) ( Z j Z l )  = (zizl)(~jzk). 

Denote the associated free multipliers by the variables 
X i j ,  v+, and & k l ,  p:jkl respectively. By grouping the 
variables in a vector Z (first the zp, then the z i z j ) ,  and 
writing 

P ( z )  = ZTQZ, 

the matrix Q can be shown to have the structure shown 
in Table 1, where the places with asterisks are either 
zero or a linear combination of the Y and p variables. 

Therefore, P ( z )  will have a sum of squares decompo- 
sition if and only if there exists variables A, p, v such 
that the matrix Q in Table 1 is positive semidefinite, 
i.e., if a certain LMI is feasible. Without loss of gen- 
erality, it is always possible to choose the p, v equal to 
zero without changing the feasibility of the LMI, since 
these terms appear only in the off-diagonal subblocks. 

Consequently, all the Aij should be nonnegative, and 
the LMI can be reduced to: 

It is easy to verify that existence of such A i j  turns out to 
be equivalent to the condition that the original matrix 
M can be written as the sum of a positive semidefinite 
and an elementwise nonnegative matrix, i.e., 

M = P + N ,  P L O ,  nij LO. (3) 

As mentioned in the introduction, this is a well-known 
sufficient condition for copositivity (see for example 
[4]). The equivalence between these two tests has also 
been noticed in [2, Lemma 3.51. Note also that condi- 
tion (3) can be obtained by considering the enhanced 
Shor relaxation, where new quadratic constraints are 
obtained by considering the pairwise products of linear 
constraints [15]. 

From what we have seen so far, we are able to obtain 
a sufficient test for copositivity, based on the sum of 
squares framework. The advantage of the approach in 
this paper is that even stronger conditions can be de- 
rived. By considering higher order forms, a hierarchy of 
increasingly powerful tests is obtained. Of course, the 
computational requirements increase accordingly. 

Take for example the family of 2 ( ~  + 2)-forms given by 

Then it is easy to see that if Pi is a sum of squares, then 
Pi+l is also a sum of squares. The converse proposition 
does not necessarily hold, i.e., Pi+l can be a sum of 
squares, while Pi is not. Additionally, if P,.(z) is non- 
negative, then so is E'(,). So, by testing if E',.(,) is a 
sum of squares (which can be done using LMI meth- 
ods, as described), we can guarantee the nonnegativity 
of P ( z ) ,  and as a consequence, copositivity of M .  

For concreteness, we will analyze in some detail the 
case r = 1. We will see that as in the case for r = 0 
described above, some variables automatically drop out 
from the optimization due to the particular structure 
of the resulting LMIs. 

As explained, we consider now the sixth order form: 

Pl(z)  := mjkzPz;z,2. 
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Q =  

* * 

... mnn ... * 

... * 

... * 

* * *  * 
* * *  * 

* * :  * 
2x12  * ... * 

* 2x13  ... * 

Table 1: The matrix Q. 

To express it as a quadratic form, in principle we 
need to define the new variables z f ,  z?zj (i # j )  and 
zizjzk ( 2  # j # I C ) .  There are n, n(n- l), and (i) differ- 
ent variables corresponding to each type. A particularly 
convenient ordering for the variables is the following: 

2 2 2  2 2 = [zlz:,zlZ:, . . . , z 1 z n , z 2 z 1 ,  z.222,. . . ,z2zn,. . . 
Z n Z ~ , Z n Z ~ , .  . Z n Z i ,  Z1Z2Z3, , Zn-2Zn-lZn] 

As in the case of the quartic form described earlier, 
without loss of generality it is always possible to choose 
some multipliers to be identically zero. This induces a 
block diagonal structure in the matrix Q, simplifying 
the final conditions, given in the theorem below. 

Theorem 1 Consider the system of LMIs given by: 

M - A ~  2 0, i = i ,  ..., n (4) 
A!. = 0, i = 1 ,  ..., n 22 

Ai..  +A!. + A ? .  = 0, i # j 
33 3 2  z3 

l i ; k + l i i i  + A b  2 0, i #  j # k 

where the n matrices Ai E RnXn are symmetric (Aik = 

Aij). If there exists a feasible solution, then M is  
copositive. Furthermore, this test is at least as powerful 
as condition (3). 

Proof: As explained earlier, the feasibility of the LMIs 
is equivalent to the existence of a sum of squares 
decomposition for Pl(z), and establishes its non- 
negativity. This in turn implies the nonnegativity 
of P(z ) ,  and therefore the copositivity of M .  
More explicitly, the nonnegativity of Pi ( z )  follows 
immediately from the LMIs above, since 

2 

and the coefficients of this last form are nonneg- 
ative. 

It is also possible to verify directly that if the 
LMIs (2) have a solution, then so does the system 
(4). Just let 

where 6 is the usual Kronecker symbol, and Ai, = 
0 for all i. This is a consequence of the L'nested'' 

U properties of the P,-based tests. 

As we have shown, this class of tests is at least as power- 
ful as the standard condition (3). A question naturally 
arises: how conservative is this procedure? To this end, 
consider the following theorem of P6lya: 

Theorem 2 [7, Section 2.241 Given a form 
F(xl ,x2,  . . . , x,) strictly positive for  xi 2 0, xi xi > 0, 
then F can be expressed as 

G 
H '  

F = -  

where G and H are forms with positive coeficients. In 
particular, we can choose 

H = ( 2 1  + ~2 + * * a  + Zn) ,  

for  a suitable r. 

In the case of a strictly copositive M ,  applying the the- 
orem to the associated positive definite form P ( z ) ,  it 
is clear then that there is a finite r for which the con- 
dition based on P, is exact. However, the minimum 
r cannot be chosen as a constant (uniformly over all 
the positive definite forms). In general (see [17]) the 
known lower bounds for r usually involve a "condition 
number" for the form P: the minimum r grows as the 
form tends to degeneracy (nontrivial solutions). This 
is consistent with the computational complexity results 
mentioned in the introduction: if the value of T was 
bounded above, then we could always produce a poly- 
nomial time certificate for copositivity (namely, the sum 
of squares decomposition of Pr(z)) ,  contradicting NP # 
CO-NP. However, these bounds can also be conservative: 
even if P has nontrivial zeros, it might be possible to 
prove copositivity with a small value of r, as the exam- 
ples we present show. 
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5 Examples 

As a confirmation that the proposed technique can ac- 
tually be stronger than the standard relaxations, we 
will consider some particular examples from previous 
works. A future version of the paper wil1,include ex- 
amples from practical applications, such as the ones 
mentioned in the introduction. 

Consider the quadratic form associated with the matrix 
J below. 

1 -1 1 1 -1 
-1 1 -1 1 1 

1 -1 

This form, originally introduced by A. Horn, appeared 
previously in [4, 151. It has been noted in [4, note added 
in proof) that it is copositive, even though i t  does not 
satisfy the condition (3). 

Nevertheless, it is still possible to prove its copositive- 
ness by the method presented in this paper. For the 
numerical implementation of the presented procedure, 
we used the semidefinite programming solver SeDuMi 
[20]. Let x := [ x 1 , 2 2 , ~ 3 , 2 4 , 1 ~ 5 ] ~ .  Taking r = 1, after 
solving the corresponding LMIs we obtain the decom- 
position: 

(XTJX)(2i + 2 2  + 2 3  + 2 4  + 2 5 )  = 
21(21  - 22 + 2 3  + 2 4  - 25)2+ 

ZZ(Z2 - 2 3  + 2 4  + 2 5  - Z l j 2 +  
23(23 - 2 4  + z5 + 2 1  - 22)2+ 

24(24  - 2 5  + 5 1  + 2 2  - 23)2+ 

2 5 ( 2 5  - 2 1  + 2 2  + 2 3  - 
4 (212224  + 5 2 x 3 2 5  + 23%421 f 24x522  f 552153)  

from where copositivity of J follows immediately. 

This example can be generalized to a family of coposi- 
tive forms, with interesting theoretical properties. Con- 
sider the following cyclic quadratic form in n = 3m + 2 
variables (m 2 l), analyzed in [l]: 

3m+2 3m+2 m 

B(x) := ( Xi) - 2 x i  c % + 3 j + l  (5) 
i = l  i = l  j = O  

where z , + ~  = z,. It is clear that the Horn forrn pre- 
sented above corresponds to the special case m == 1. It 
has been shown in [l] that this is an extreme copositive 
form. Therefore, since B ( x )  is neither componentwise 
nonnegative nor positive semidefinite, it cannot satisfy 
condition (3). Generalizing the decomposition above, 
we have the following theorem: 

Theorem 3 Let B(x) be as in equation (5). Then, it 
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has the decomposition: 

n m  / m  

Proof: For notational simplicity, let si(x) := 
.=o Zi+3j+l .  Let L(x) be the left-hand side of m 

(6j. Then, 
n n  n n n  

i = l  j=1  k = l  i = l  k=1 

The first term in the right-hand size of (6) can be 
written as: 

i = l  

Subtracting, we obtain: 
n n  n 

= 2 r z i  '+j - 2 S 4 X )  sz(x) ) P 
=1 

U -  
i= l  \; I 

Expanding inside the sum, and cancelling identi- 
cal terms corresponding to  di.ferent values of i, 
after some manipulations we obtain the expres- 
sion: 

n m  

2Z+3k-2(52+3k+22+-3(k+l)+'  . '+zi+3m), 
i=l k = l  

f rom where the result follows. 0 

6 Conclusions 

A new SDP-based procedure for ch.ecking copositivity 
of a matrix was developed. It is stronger than the stan- 
dard sufficient condition (equation (3) ) ,  as was shown 
with the Horn form example. An important advantage 
is that it can be applied to matrices with unknown co- 
efficients, if the dependence is affin-e. This important 
property can be exploited [12] in the formulation of 
higher-order SDP relaxations for quadratic programs. 



The procedure raises several interesting questions. For 
example, we know that the relaxation presented in The- 
orem 1 cannot be exact, since it runs in polynomial 
time. What is the minimum order n of a counterex- 
ample? For the case of the standard condition (3), the 
results in [4] show that it is exact for n 5 4. 

Furthermore, there seems to be important theoretical 
connections with “lift-and-project” methods [9, 181 for 
deriving valid inequalities in zero-one combinatorial op- 
timization problems. These relationships, as well as the 
connections with the enhanced relaxations in [12], will 
be explored elsewhere. 

Important practical issues to be addressed deal with the 
question of how to exploit the special structure present 
in the problem, in order to get more efficient algorithms. 
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